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Abstract: Neural oscillations are essential for brain functions. Research has suggested that the fre-
quency of neural oscillations is lower for more integrative and remote communications. In this vein,
some resting-state studies have suggested that large scale networks function in the very low frequency
range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks
because both resting-state studies and conventional frequency tagging approaches cannot simultane-
ously capture multiple large scale networks in controllable cognitive activities. In this preliminary
study, we aimed to examine whether large scale networks can be modulated by task-induced low fre-
quency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention net-
work test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating
that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and
intranetwork synchronizations as well as coherence were increased at the fundamental frequency and
the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of
information communication. However, there was no difference among attention conditions, indicating
that lfSSBRs modulate the general attention state much stronger than distinguishing attention condi-
tions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it
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INTRODUCTION

Neural oscillations are essential for establishing precise
temporal relationships between neural responses that sup-
port various cognitive activities [Uhlhaas and Singer,
2010]. In other words, the particular pattern of neural
oscillations corresponds to a specific cognitive state [Ward,
2003]. In the high frequency range (>1 Hz), some impor-
tant rules of neural oscillations have been established. For
instance, higher frequency (e.g., gamma band) oscillations
are restricted to a small-scale space, whereas long range
networks are recruited during slow oscillations (e.g., delta
band) [Buzs�aki and Draguhn, 2004]. In addition, the intrin-
sic timescales are lengthened from sensory regions to areas
engaged in higher order cognition [Murray et al., 2014].
Accordingly, large scale networks should work in a very
low frequency range due to their long range communica-
tions and integrative roles in various brain functions. In
fact, considerable evidence from resting-state functional
magnetic resonance imaging (fMRI) studies has shown
that the strength of large scale networks is highest in
lower frequencies (usually 0.01–0.1 Hz) and becomes
weaker when the frequency increases [Gohel and Biswal,
2015; Li et al., 2015; Wu et al., 2008], supporting the low
frequency dominance of large scale networks. However,
the frequency characteristics of large scale networks have
not been well understood.

Although the frequency characteristics of low frequency
neural oscillations are primarily determined by blood oxy-
gen level dependent (BOLD) signal, these characteristics
are reported to be associated with neural activities. For
instance, combined EEG-fMRI studies indicated direct cor-
relation between electrophysiological signal and BOLD
measurement in the infraslow frequency range [Hiltunen
et al., 2014; Pan et al., 2013; Thompson et al., 2014], sug-
gesting that BOLD signal can reflect neural activities at the
same frequency band. The BOLD signal is also related to
band-limited electrophysiological activities within high fre-
quency range [Logothetis et al., 2001; Wang et al., 2012].
Furthermore, large scale networks defined by BOLD fluc-
tuations not only have distinct frequency characteristics
[Qian et al., 2015; Thompson and Fransson 2015; Wu et al.,
2008], but also are associated with different high frequency
electrophysiological activities [Mantini et al., 2007; Wang
et al., 2012], indicating the relationship between BOLD sig-
nal and electrophysiological activities is frequency-specific.
Furthermore, the low frequency fluctuations (usually< 1
Hz) and high spatial resolutions make BOLD signal be

appropriate to investigate frequency characteristics of large
scale networks.

Although the BOLD signal can reflect neural activities, it
is difficult for resting-state studies to capture frequency
characteristics of large scale networks in particular cogni-
tive processes due to the mind wandering nature during
resting state [Mason et al., 2007]. The frequency of neural
oscillations in a specific brain region depends on what
cognitive processes are performed in this area and which
network is this region involved in Siegel et al. (2012).
Therefore, a task-based study is needed to reveal the cog-
nitive significance of frequency characteristics of large
scale networks.

In contrast to resting-state study, the frequency tagging
approach holds promise for revealing frequency character-
istics of particular brain regions. Recently, several nonin-
vasive stimulating methods have been extensively used to
modulate rhythmic brain activities by means of frequency
tagging, such as steady-state sensory presentation, trans-
cranial magnetic stimulation, transcranial direct current
stimulation, and transcranial alternating current stimula-
tion [Thut et al., 2011]. However, these techniques cannot
modulate multiple large scale networks simultaneously.
To overcome this limitation, we adopted a new frequency
tagging method—the low frequency steady-state brain
responses (lfSSBRs)—to modulate large scale networks.

The lfSSBRs reflect entrained brain responses to a particu-
lar task operated in a constantly low frequency [Thut et al.,
2012; Vialatte et al., 2010; Wang et al., 2014b]. These entrained
responses are demonstrated to be phase-locked to the onset
of stimuli [Calderone et al., 2014; Lakatos et al., 2008].
According to the synchronized gating hypothesis [Florin and
Baillet, 2015], the synchronization of low frequency oscilla-
tions opens the gate of information communication for high
frequency oscillations. Because lfSSBRs can be evoked in
many brain regions that are involved in different functional
networks, we suggested that it can modulate both intra- and
internetwork information communications via phase syn-
chronization. In addition, the converging lines of evidence
from the similarities between lfSSBRs and steady-state
evoked potentials (SSEPs), the survived lfSSBRs after hemo-
dynamic response function (HRF) deconvolution, and the
similar spatial distribution of lfSSBRs with regions defined
by activation studies, indicate that lfSSBRs can reflect neural
level activities. Therefore, we expected that lfSSBRs can mod-
ulate information communications among neural assemblies.

Furthermore, the lfSSBRs measure the variability of
BOLD signal, and are different from the activation that
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measures the mean value of BOLD signal [Wang et al.
2014b,a]. In prior studies, Garrett et al. [2013a], [2014]
found that task-related regions assessed by the BOLD sig-
nal variability are dispersive and distinctive from those
measured by the mean BOLD signal. In contrast, we
observed that lfSSBRs were evoked in brain regions
defined by the activation [Wang et al., 2014b,2015a]. Thus,
the relationship between these two indices is under
debate. In the current study, we expected to shed light on
this important question by examining the spatial distribu-
tion of lfSSBRs.

The attention network test (ANT) [Fan et al., 2002] with
a pure block design and nonorthogonal contrast [Wang
et al., 2014a,2015b] was adopted to evoke lfSSBRs. The
revised ANT included four task conditions with high simi-
larity, providing reproducible evidence for the modulation
of large scale networks. The 0.1 Hz was chosen as it is in
the middle of the frequency range (0.05–0.1875 Hz) in
which lfSSBRs have been successfully evoked [Wang et al.,
2014b,2015c]. In the face of salient stimuli, the triple net-
work system [the salience network (SN), central executive
network (CEN), and default mode network (DMN)] would
coordinate with each other to produce adaptive behavior
[Menon, 2011; Wen et al., 2013]. The visual and sensorimo-
tor networks were also expected to be modulated in the
ANT because these networks are involved in all visual
tasks that require motor responses, i.e., stimulus–response
(S–R) tasks. Considering the sensorimotor bias of lfSSBRs
[Wang et al., 2015a], the attention networks may be
modulated more weakly than the sensory-motor system
and triple network system. Therefore, we hypothesized
that the triple network system and the sensory-motor sys-
tem would be effectively modulated by lfSSBRs in a
frequency-specific pattern.

MATERIALS AND METHODS

Subjects

Thirty subjects took part in the experiment (15 females,
ages ranged: 17–24 years, mean age: 21.20 6 2.33). All of
them were right-handed (tested using the Chinese version
of Edinburgh-Handedness Questionnaire; coefficients >50)
[Wang et al., 2013]). They were asked to have enough
sleep and avoid any drugs and alcohol in 24 h before the
experiment. All participants reported normal or correct-to-
normal vision, without any medication, and neurological
or psychiatric disorders. This study was approved by the
research ethical committee of School of Life Science and
Technology, University of Electronic Science and Technol-
ogy of China. Participants were treated in compliance with
the Declaration of Helsinki. Informed consents from partic-
ipants were obtained before taking part in the study.

Stimuli Presentation and Task Procedure

The experiment was run on a Dell laptop computer. Pic-
tures were projected to a screen via a projector and reflected
to the eyes of subjects through a mirror. E-Prime 2.0 software
(http://www.pstnet.com; Psychology Software Tools) was
used for programming, stimuli presentation, and timing con-
trol. Responses were collected through a response box. All

stimuli were black figures presented at the center of a screen

on a gray background. Fixation was a plus sign (0.228 visual

angle). The visual angle subtended by the whole target

(including five arrows and interarrow spaces, 0.538 visual

angle for each arrow) was 3.18. The peripheral target in the

orienting condition was 28 away from the fixation.
All participants completed four blocks (alerting block,

orienting block, executive control block, and baseline

block) of the ANT. The order of four blocks was counter-

balanced across subjects. Each block took 424 s, which con-

tained buffer time of 4 s, two practice trials of 10 s and 40

experimental trials of 10 s. This design advanced our pre-

vious studies [Wang et al., 2014a,2015b] to provide com-

mon baseline (the baseline block) for all attention

conditions. Participants were asked to focus on the fixation

throughout the experiment and, during practice.
As shown in Figure 1, each trial began with a fixation or

cue for 100 ms which was followed by 300 ms fixation.
After that a target (congruent or incongruent, central, or
spatial) appeared for 2,000 ms or until the participant
pressed a key. Lastly, another fixation was presented to
ensure the overall time of one trial was 10,000 ms (0.1 Hz).
The subjects were asked to judge the direction of the third
arrow (the central one) by pressing the left key if it points
to the left and the right key if it points to the right. Before
task blocks, there was a resting-state block which had a

comparable length to the task blocks. In the resting-state

block, subjects were asked to stay steady and awake, not

to think of anything in particular.

Behavioral Data Analysis

Instead of the conventional subtraction measure [Fan

et al., 2002, 2009], we used ratio scores to define the effi-

ciency of attention networks. The ratio scores could avoid

the baseline difference and isolate the attention system

from the overall reaction time (RT) [Westlye et al., 2011].

The attention network scores (ANSs) were computed by

Eqs. (1–3):

A5
RT ðAlertingÞ2RT ðBaselineÞ

RT ðBaselineÞ (1)

O5
RT Orienting

� �
2RT Baselineð Þ

RT Baselineð Þ (2)
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E5
RT Executiveð Þ2RT Baselineð Þ

RT Baselineð Þ (3)

We conducted one sample t tests to assess the effect of
ANSs, paired-sample t tests to test the difference between
ANSs, Pearson’s correlation to measure the dependence of
ANSs, and split-half reliability to evaluate the stability of
ANSs. The split-half reliability was estimated using Monte
Carlo approach with 10,000 times of simulation [Wang
et al., 2015b].

Image Acquisition

fMRI data were acquired using a 3.0T GE 750 scanner
(General Electric, Fairfield, Connecticut) equipped with
high-speed gradients. An 8-channel prototype quadrature
birdcage head coil fitted with foam padding was applied
to minimize head movement. Functional images were
acquired using a gradient-recalled echo-planar imaging
(EPI) sequence. The parameters were as follows: repetition
time (TR) 5 2,000 ms, echo time (TE) 5 30 ms,
bandwidth 5 250 Hz/pixel, 908 flip angle, 43 axial slices
(3.2 mm slice thickness without gap), 64 3 64 matrix,
22 cm field of view.

Image Preprocessing

Functional images were preprocessed using the Data
Processing Assistant for Resting-state fMRI (DPARSF 2.2,
http://www.restfmri.net/forum/DPARSF). The prepro-
cessing steps of task blocks included: the first 12 scans
(including two trials) were discarded to allow evoked fluc-

tuations to appear, signal to reach equilibrium and partici-
pants to adapt to the scanning noise; the remaining
images were slice-time corrected, spatially aligned and
then spatially normalized to Montreal Neurological Insti-
tute (MNI) EPI template and resampled to 3 3 3 3 3 mm3

isotropic voxels. The normalized images were spatially
smoothed with a 6 mm full width half maximum (FWHM)
Gaussian kernel. The linear trend of time courses was then
removed. The head motion parameter was further tested
using the method proposed by Power et al. [2012]. There
was no difference for the mean frame-wise deviation
among conditions: F (4, 116) 5 0.73, P 5 0.493, partial
g2 5 0.025. Then, six head motion parameters, white matter
signal and cerebrospinal fluid signal were regressed out
before power analysis. The global signal was not regressed
out because this operation may remove a global neuronal
signal that is induced by a widely distributed ascending
input [Sch€olvinck et al., 2010] and reinforce the neuronal–
hemodynamic correspondence [Keller et al., 2013]. After
that the HRF was deconvoluted according to previous
studies [Wang et al., 2014b; Wu et al., 2013] to eliminate
different influences of neurovascular coupling on signals
of lower (<0.1 Hz) and higher (>0.1 Hz) frequency bands
[Robinson et al., 2006].

The Power Analysis

The SSEPs are defined by power increase at particular fre-
quency after Fast Fourier Transform (FFT) [Herrmann, 2001].
In line with this, the FFT was used to uncover the lfSSBRs by
converting the time course of each voxel to the frequency
domain without bandpass filtering. The frequency resolution

Figure 1.

The procedure of attention network test with pure block

design. The baseline, alerting, orienting, and executive control

conditions were arranged in separated blocks. There was only

one condition in each block. Each trial started with a cue (the

alerting condition) or a fixation lasting for 100 ms. After a 300

ms interval, the target was presented for 2000 ms or disap-

peared after one key was pressed. After that a fixation was pre-

sented until the end of that trial. Each trial lasted for 10 s (0.1

Hz). RT: reaction time.
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was 0.0025 Hz (sampling rate/sampled data: 0.5 Hz/200).
The power spectrum of each block for each subject was
obtained in the gray matter constrained by the gray matter
probability template with a threshold of 0.2 [Liu et al.,
2015b]. Both whole brain and regional power spectrums
were measured. At the whole brain level, the power spec-
trum was defined as the average of power spectrum in all
masked voxels. Regional lfSSBRs were defined as the power
spectrum in each voxel. The effect of task was assessed using
within-subject analysis of variance (ANOVA) at each of the
following frequency band: the fundamental frequency
(0.097–0.103 Hz), the first harmonic (0.197–0.203 Hz), the
remaining three frequency ranges (0.01–0.097, 0.103–0.197,
and 0.203–0.25 Hz) as well as the full frequency band (0.01–
0.25 Hz). These frequency bands were obtained by band pass
filter with DPRSRF 2.2. The fundamental frequency and the

first harmonic were selected via visual inspection (see Fig. 2)
and according to previous studies [Wang et al., 2014b,2015b].
The remaining frequency bands were tested to demonstrate
the frequency-specific modulation of lfSSBRs to brain net-
works. The frequency interval of 0.0025–0.01 Hz was not
included due to slow drift. Post hoc analysis was operated
with paired-sample t test using the SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm). All resulting statistic maps were
corrected using the family wise error (FWE) method
(P< 0.05) for multiple comparisons [Worsley et al., 1996].

The Functional Connectivity Analysis

To ensure the consistency of networks between power
analysis and functional connectivity analysis, we con-
strained these networks within regions with significant
main effect of power in the ANOVA at the fundamental
frequency. The Anatomical Automatic Labeling (AAL)
template with explicit labels was further used to restrict
the boundary of networks [Tzourio-Mazoyer et al., 2002].
As shown in Figures 3A and 4, the visual network (VN)
includes the lateral and medial visual cortex; the sensori-
motor network (SMN) includes the precentral gyrus, post-
central gyrus, supplementary motor area, and basal
ganglia; the CEN includes the lateral frontal cortex and
posterior parietal cortex; while the SN includes the ante-
rior insula and dorsal anterior cingulate cortex. Because
there was no significant main effect of power in the DMN,
this network was constrained only by the AAL template,
including the orbital part of medial frontal cortex and rec-
tus (the ventral medial frontal cortex), posterior cingulate
cortex/precuneus, and bilateral angular.

The preprocessed imaging data was firstly band pass fil-
tered at the aforementioned six frequency bands. Voxel-wise
functional connectivity was then calculated within each of

Figure 2.

lfSSBRs at the whole brain level. Significant lfSSBRs were evoked

by all four task conditions at the fundamental frequency and the

first harmonic compared to the resting-state.

Figure 3.

Main effects of regional lfSSBRs. At the fundamental frequency, significant lfSSBRs were evoked in

the visual, sensorimotor, ventral attention, salience, and central executive networks (A). At the

first harmonic, remarkable lfSSBRs were shown only in the visual and sensorimotor networks

(B). All results were corrected with FWE method (P< 0.05) and visualized with the BrainNet

Viewer [Xia et al., 2013].
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these frequency bands. Both conventional time correlation
and partial correlation analyses were conducted. The time
correlation was computed between each pair of voxels within
a network (intranetwork correlation) or between two net-
works (internetwork correlation). Noting that the partial cor-
relation was not purely voxel-wised for two reasons: first, the
voxel-wised partial correlation cannot be computed mathe-
matically due to many more voxels than time points; second,
the intranetwork partial correlation cannot be computed at
network level with the mean signal of all voxels in one net-
work. Therefore, the partial correlation estimated the linear
conditional dependence between each pair of voxels within a
network or between two networks, after regressing out the
averaged time courses of remaining networks. Correlation
coefficients were then normalized by Fisher’s r-to-z transfor-
mation to facilitate group comparison [Liu et al., 2015a]. The
correlation coefficient of each network was deemed as mean
z values in this network. The ANOVA with task condition as
within-subject factor was performed for each intranetwork
connection and each internetwork connection at each fre-
quency band. Adjustments with Greenhouse–Geisser method
were used wherever the sphericity assumption was violated
[Wang et al., 2013]. Post hoc analysis was conducted with
paired-sample t test. Multiple comparisons were corrected
using Bonferroni’s method (P< 0.05).

Coherence Analysis

Besides traditional correlation in the time domain, the
coherence is another index that measures functional con-

nectivity in the frequency domain. Coherence, unlike the
time correlation, captures temporal dependence even in
the face of phase lags (Li et al., 2015). The voxel level
coherence was calculated by employing the function
‘mscohere’ in MATLAB 8.4, the square root of the raw
value was extracted and averaged across voxels within a
network or between two networks. The mean coherence
coefficient of one network or one pair of network was
underwent ANOVA with task conditions as within subject
factor. Post hoc analysis was conducted with paired-sample
t test. Multiple comparisons were corrected as we did in
the functional connectivity analysis.

RESULTS

Behavioral Results

Table I summarizes the RT and accuracy of each task block.
We then replaced RTs in erroneous trials (34 trials/4800 tri-
als 5 0.71%) and those larger than three standard deviations (56
trials/4800 trials 5 1.17%) with the median of RT in that block
for each subject. Then the median of each block was used to cal-
culate ANSs according to Eqs. (1–3). As shown in Table II, all
effects of ANSs were significantly different from zero and from
each other [all t (29)> 3.25, P< 0.003, Cohen’s d> 0.705]. Fur-
thermore, there were no (alerting vs. orienting, r 5 0.03,
P 5 0.892; orienting vs. executive, r 5 0.31, P 5 0.098) or weak
(alerting vs. executive, r 5 0.40, P 5 0.028) correlations between
ANSs. All these correlations cannot survive Bonferroni’s correc-
tion (P< 0.017 for triple comparisons). Finally, the ANSs are

Figure 4.

The schematic plot of the five networks.
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highly reliable (alerting: 0.736; orienting: 0.811; executive: 0.946)
in our paradigm, indicating that the ANT with a pure block
design and nonorthogonal contrast can get high reliability.

lfSSBRs at Different Frequency Bands

As shown in Figure 2, significant lfSSBRs were evoked
by all four task conditions at the fundamental frequency
and the first harmonic. ANOVA showed a remarkable main
effect of condition at 0.01–0.097, 0.097–0.103, 0.197–0.203,
and 0.01–0.25 Hz frequency bands (also see Table III). The
main effect of condition is not significant at 0.103–0.197 Hz
[F (4,116) 5 1.316, P 5 0.268] and 0.203–0.25 Hz [F
(4,116) 5 2.174, P 5 0.076] frequency bands. Post hoc analysis
revealed that the power of task conditions is lower than
that of the resting-state at 0.01–0.097 Hz frequency band,
whereas higher than that of the resting-state at 0.097–0.103,
0.197–0.203, and 0.01–0.25 Hz frequency bands. There was
no difference among four task conditions.

For the fundamental frequency (Fig. 3A), voxel-wise power
analysis revealed significant effects of lfSSBRs in the VN,
SMN, CEN, SN, cerebellum network (CN; most parts of the
cerebellum), and ventral attention network (VAN; the right
temporal–parietal junction). These results are consistent with
previous findings [Wang et al., 2014b] that lfSSBRs modulate
not only task-general networks (e.g., the triple network sys-
tem) but also task-specific networks such as the VAN.

For the first harmonic (Fig. 3B), remarkable lfSSBRs were
only observed in the VN and SMN. These results replicated
previous findings that only the sensory-motor system was strik-
ingly modulated at relative high frequency bands [Wang et al.,
2014b], indicating that sensory-motor system involves a wider
frequency range than the more integrative networks do. The
power analysis in other frequency bands showed no significant
main effect of power. This suggests that the power within these
frequency bands is not significantly modulated by the task.

Post hoc analysis for both the fundamental frequency
and the first harmonic showed that the power was differ-
ent between task conditions and the resting-state rather
than among task conditions, indicating that the modula-
tion of brain states by lfSSBRs overwhelms the modulation
of different attention conditions. Meanwhile, it is consist-
ent with previous results of sensorimotor bias [Wang
et al., 2014b,a]. That is to say, the lfSSBRs modulate senso-
rimotor network much more that task-related regions.

Intra- and Internetwork Time Correlations

For the time correlation, Table IV shows the main effect
of condition at six frequency bands. Most effects of inter-
and intranetwork relationships were significant at the fun-
damental frequency, the first harmonic, and the full fre-
quency band. Only a small part of main effects were
significant at other frequency bands. Therefore, the signifi-
cant effect at full frequency band was mainly contributed
by the fundamental frequency and the first harmonic.
Strong effects at the fundamental frequency and the first
harmonic along with weak effects at other frequency inter-
vals indicated that lfSSBRs modulate the activity of large
scale networks in a frequency-specific means.

Post hoc analysis revealed that most of the differences
were between task conditions and resting-state (see Fig. 5
for intranetwork correlation and Fig. 6 for internetwork
correlation) which is consistent with the results of power
analysis.

For the intranetwork correlation (Fig. 5), only the DMN
was not modulated at the fundamental frequency. All net-
works were modulated at the first harmonic. The DMN
and SN were not modulated at the full frequency band. In
addition, the CEN, SN, and VN were modulated by a few
task conditions at other frequency intervals.

For the internetwork correlation (Fig. 6), all networks were
modulated by task conditions at the fundamental frequency.
All relationships except those of DMN-SMN and SMN-SN
were modulated at the first harmonic. The results at full fre-
quency band were much similar to those at the first harmonic.
Furthermore, the VN, SMN, and CEN were modulated by a
few task conditions at other frequency bands.

These results suggest that both the triple network sys-
tem and sensory-motor system and internetwork relation-
ships are modulated by the task conditions. The
modulation effect is mainly at the fundamental frequency
and the first harmonic, indicating frequency-specific mod-
ulation for large scale networks. However, there was no
condition effect at any frequency band in the partial corre-
lation analysis, indicating mutually influences of intra-
and internetwork information communications.

Inter- and Intranetwork Coherences

As shown in Figure 7, the intra- and internetwork coher-
ences were modulated around the fundamental frequency
and the first harmonic. The DMN was not significantly
modulated by the task, while coherence between the DMN

TABLE I. The reaction time and accuracy per condition

(M 6 SD)

Condition Reaction time (ms) Accuracy (%)

Baseline 490.18 6 79.84 99.33 6 1.12
Alerting 446.67 6 66.83 99.17 6 1.20
Orienting 634.41 6 109.10 99.17 6 1.20
Executive 606.18 6 156.65 99.50 6 1.02

M: mean; SD: standard deviation.

TABLE II. Statistical results of attention network scores

Effect Value (M 6 SD.) T (29) Pa

Alerting 20.08 6 0.07 26.74 <0.0001
Orienting 0.30 6 0.15 11.13 <0.0001
Executive 0.24 6 0.26 5.02 <0.0001

aTwo-tailed.
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and other networks was modulated at only the fundamen-
tal frequency. Post hoc analysis showed that the effect of
condition was principally explained by the difference
between task and resting conditions rather than among
task conditions. These results were much similar to those
in power analysis and time correlation analysis, indicating
that lfSSBRs modulate intra- and internetwork information
communications in a frequency-specific way.

DISCUSSION

Clarifying frequency characteristics of large scale brain net-
works in the low frequency range is of importance for under-
standing how the brain implements various cognitive
activities. To the best of our knowledge, this is the first study

that simultaneously modulates multiple large scale networks
with lfSSBRs. Although this study cannot tell whether the
entrainment mechanism [Thut et al., 2012] or the linear
superposition mechanism [Capilla et al., 2011] or both of
them are responsible for lfSSBRs, our evidence suggests that
lfSSBRs can modulate information communications of large
scale networks. Given the essential roles of large scale net-
works in normal brain functions [Krishnadas et al., 2014;
Vahdat et al., 2014], this study opens a new window to study
large scale brain activity in a frequency-specific means.

lfSSBRs Modulate Large Scale Networks

The lfSSBRs enhance the power as well as the informa-
tion communication of large scale networks. First, we

TABLE IV. Intra- and internetwork correlations modulated by tasks

Frequencya 0.01–0.097 0.097–0.103 0.103–0.197 0.197–0.203 0.203–0.25 0.01–0.25

Comparison Fb P F P F P F P F P F P

CEN 1.572 0.186 51.983 <0.001 7.599 <0.001 15.474 <0.001 4.914 0.001 23.071 <0.0001

DMN 0.470 0.757 2.150 0.079 1.092 0.364 2.814 0.028 1.452 0.221 0.320 0.864
SMN 1.102 0.359 58.857 <0.001 2.365 0.084 24.207 <0.001 2.769 0.048 17.871 <0.0001

SN 3.789 0.014 33.504 <0.001 0.702 0.517 12.951 <0.001 0.251 0.909 1.377 0.246
VN 0.327 0.860 33.248 <0.001 5.102 0.004 11.819 <0.001 3.478 0.021 13.690 <0.0001

CEN_DMN 0.101 0.982 5.807 <0.001 3.028 0.020 3.915 0.005 2.113 0.111 4.627 0.002

CEN_SMN 1.095 0.363 55.708 <0.001 4.231 0.009 18.372 <0.001 4.879 0.005 25.425 <0.0001

CEN_SN 0.529 0.715 51.685 <0.001 1.433 0.228 16.869 <0.001 1.247 0.298 17.813 <0.0001

CEN_VN 1.762 0.141 39.333 <0.001 4.809 0.001 15.224 <0.001 2.346 0.081 21.617 <0.0001

DMN_SMN 0.131 0.971 5.994 <0.001 1.867 0.121 1.218 0.307 2.601 0.066 3.128 0.017
DMN_SN 0.218 0.928 3.485 0.01 1.229 0.303 1.484 0.212 0.557 0.694 2.979 0.022
DMN_VN 0.453 0.770 5.383 <0.001 2.806 0.029 3.604 0.008 2.912 0.024 4.451 0.002
SMN_SN 0.665 0.617 56.145 <0.001 0.363 0.772 19.320 <0.001 0.907 0.446 15.253 <0.0001

SMN_VN 2.508 0.046 38.316 <0.001 3.781 0.006 12.591 <0.001 3.959 0.005 24.967 <0.0001

SN_VN 0.491 0.742 34.435 <0.001 1.851 0.124 11.619 <0.001 1.739 0.146 15.450 <0.0001

aHz.
bdf: 4, 116.
The bold values indicate significant correlation with P< 0.05.

TABLE III. Difference of power at six frequency bands

Frequencya 0.01–0.097 0.097–0.103 0.197–0.203 0.01–0.25

ANOVA Fb P F P F P F P

24.995 <0.0001 71.311 <0.0001 26.784 <0.0001 12.694 <0.0001

t test tc P t p t P t P

A_R 26.699 <0.0001 10.467 <0.0001 7.436 <0.0001 6.066 <0.0001
B_R 26.083 <0.0001 9.567 <0.0001 5.753 <0.0001 3.595 0.001
E_R 28.234 <0.0001 11.287 <0.0001 6.667 <0.0001 4.867 <0.0001
O_R 28.703 <0.0001 12.333 <0.0001 6.450 <0.0001 4.375 0.0001

aHz.
bDegree of freedom (df): 4, 116.
cdf: 29.
A: alerting; B: baseline; E: executive; O: orienting; R: resting-state; there was no significant power effect at 0.103–0.197 Hz and 0.203–0.25
Hz frequency bands.
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observed lfSSBRs in large scale networks indexed by
power increase. At the fundamental frequency, the triple
network system and sensory-motor system are universally

modulated by different attention conditions. The sensory-
motor system is also modulated at the first harmonic. This
resonant phenomenon is similar to that of SSEPs and that
in our previous studies [Wang et al., 2014b,c]. These
results suggest different frequency characteristics of the
triple network system and sensory-motor system, and dif-
ferent mechanisms of lfSSBRs and SSEPs. Specifically, the
advantage of lfSSBRs compared to SSEPs lie in that they
can simultaneously modulate multiple large scale
networks.

Second, time correlation and coherence analyses show
further evidence that intra- and internetwork synchroniza-
tions are considerably modulated by lfSSBRs. Strong mod-
ulations can be detected at the fundamental frequency and
the first harmonic rather than at other frequency bands.
These results indicate that information communications
are enhanced by lfSSBRs and this enhancement is fre-
quency specific. The frequency-specific modulation indi-
cates that lfSSBRs can specifically influence brain activities
without affecting activities at nontarget frequency bands.
The similarity among results of multiple analytical
approaches may help to elucidate a hot issue in recent lit-
erature: the relationship between local activities and net-
work architectures [Baria et al., 2013; Di et al., 2013].
According to a popular perspective of functional connec-
tivity [Guerra-Carrillo et al., 2014], large scale networks
originate from long term co-activation between brain
regions. Therefore, the lfSSBRs may be an effective means
to link local brain activities with inter-regional communi-
cations and shed light on the development of large scale
networks.

The partial correlation analysis provides further evi-
dence for the simultaneous modulation of lfSSBRs to both
intra- and internetwork synchronizations. The disappear-
ance of condition effect in the partial correlation is consist-
ent with the entrainment hypothesis of SSBRs [Calderone
et al., 2014; Lakatos et al., 2008] and the synchronized gat-
ing hypothesis of information communication [Florin and
Baillet, 2015]. Accordingly, the lfSSBRs reset the phase of
low frequency fluctuations in multiple networks, opening
the gate of intra- and internetwork information communi-
cations. Under this condition, the information flows among
all these networks are enhanced and mutually dependent.

Furthermore, the power increase reflects the enhanced
BOLD variability. We observed lfSSBRs in the task-related
regions primarily defined by previous studies measuring
brain activation, indicating similar mechanisms of BOLD
variability and BOLD activation. However, the spatial dis-
tributions revealed by these two indices are largely nono-
verlapping in previous studies [Garrett et al., 2011, 2013b].
This distinction may be resulted from that Garrett et al.
did not focus on specific frequencies whereas both neural
oscillations and BOLD fluctuations are frequency-specific
[Buzs�aki and Draguhn, 2004; Garrett et al., 2013b; Li et al.,
2015]. Distinctive analytical approaches in their studies
[Garrett et al., 2010, 2011, 2014] and ours [Wang et al.,

Figure 5.

The intranetwork synchronization. Systematic modulation of the

five networks is shown at the fundamental frequency (B), the first

harmonic (D), and full frequency band (F) rather than other fre-

quency bands (A: 0.01–0.097 Hz; C: 0.103–0.197 Hz; E: 0.203–0.25

Hz). *** P< 0.005. Error bar shows the 95% confidence interval.
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Figure 6.

The internetwork synchronization. Similar to intranetwork correlation, systematic modulation of

internetwork correlation is shown at the fundamental frequency (B), the first harmonic (D), and

full frequency band (F) rather than other frequency bands (A: 0.01–0.097 Hz; C: 0.103–0.197

Hz; E: 0.203–0.25 Hz). ***P< 0.005. Error bar shows the 95% confidence interval.
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2014b,2015c] may also lead to different results. Combining
steady-state and unsteady-state experimental designs may
help to clarify the relationship between BOLD variability
and BOLD activation in frequency-dependent and
frequency-independent means.

It is worth noting that the DMN and its relationship with
other networks were seldom modulated by lfSSBRs. These
results may be explained by two reasons: first, although the
DMN has been suggested to be involved in attention processing

[Raichle, 2015], it is mainly responsible for self-reference process-
ing and autobiographical memory [Andrews-Hanna et al.,
2010b]. Its activities are principally internal and spontaneous
rather than being stimulus-locked [Andrews-Hanna, 2012;
Andrews-Hanna et al., 2010a]. Therefore, top-down or spontane-
ous cognitive tasks may modulate activities in the DMN; alter-
natively, previous studies have revealed that the dominant
frequency of DMN is 0.06 Hz or between 0.01 and 0.04 Hz [Li
et al., 2015; Wu et al., 2008], indicating that a greater resonance

Figure 7.

Intra- and internetwork coherences. lfSSBRs modulate coherence around the fundamental fre-

quency and the first harmonic. The modulation was resulted from the difference between task

and resting conditions rather than among different task conditions. Noting that coherence in the

DMN was not modulated, while coherence between the DMN and other networks was modu-

lated at the fundamental frequency.
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may be occurred at lower frequency rather than at 0.1 Hz [Rosa-
nova et al., 2009]. Both functional and frequency-specific reasons
should be tested in future studies.

Possible Mechanism of lfSSBRs

The entrainment and the linear superposition of transient
activity are two dominating theories in deciphering SSEPs
[Capilla et al., 2011; Thut et al., 2011, 2012]. The entrainment
theory proposes that brain activities can be entrained by
regularly repeated exogenous stimulus [Thut et al., 2012],
whereas the linear superposition hypothesis insists that
SSEPs are the results of linear superposition of transient
activity [Capilla et al., 2011]. Both perspectives can explain
the phenomenon of lfSSBRs, considering similar waveforms
of lfSSBRs and SSEPs and similar spatial distributions of
lfSSBRs and activation. Moreover, it is not known whether
lfSSBRs are driven by other mechanisms. Therefore, the
mechanism of lfSSBRs warrants future research.

The significance of this study lies in (1) the modulation
of large scale networks is limited in predefined frequency
band, providing a controllable approach to investigate large
scale brain activity; (2) it may uncover frequency character-
istics of large scale networks such as those rules established
in higher frequency ranges. For instance, the sensorimotor
bias at the first harmonic may indicate that the sensory-
motor system has higher natural frequency than the more
integrative triple network system [Wang et al., 2014b]; and
(3) it provides a new means to study brain functions in dif-
ferent states. It is suggested that the HRF is different in
task- and resting-state [Chen and Glover, 2015], while the
lfSSBRs are independent of HRF [Wang et al., 2014b,2015b].
Therefore, lfSSBRs provide a new method using power and
correlation analyses to expound different mechanisms of
cognitive activities at different states.

Implications for Attention Network Test

We obtained highly reliable ANSs by combining a pure
block design and nonorthogonal contrast, replicating pre-
vious findings [McConnell and Shore, 2011; Wang et al.,
2014a,b]. High reliability is suggested to benefit the estima-
tion of true internetwork correlation [MacLeod et al.,
2010]. However, there is no strong internetwork correla-
tion in the present study, indicating relatively independent
ANSs. Furthermore, we cannot evaluate how these three
attention networks cooperate with each other due to the
pure block design. What we can conclude is the independ-
ence of ANSs which may be cause by personal specific
profile of ANSs [Wang et al., 2015b].

The lack of distinctive BOLD effects for the three atten-
tion networks may be due to their weak effects in this
task. Although some regions are overlapped with attention
networks (e.g., the lateral frontal cortex, temporoparietal
junction), the lack of difference among three attention net-
works indicates that these regions are associated with

exogenous attention or brain state switch rather than with
distinctive attention states. Several factors may be respon-
sible for this phenomenon. On the one hand, although we
have demonstrated the high reliability of ANSs by nonor-
thogonal method and block design [Wang et al.,
2014a,2015b], the validity of ANSs may be not so high. For
instance, the long intertrial interval may be involved in
dynamic tonic/phasic alertness and voluntary temporal
preparation [Matthias et al., 2010]. On the other hand, the
three attention networks have been suggested to share
common attention sources [Fan et al., 2009; Wang et al.,
2015b]. For example, the norepinephrine and dopamine
which support alerting and executive control functions
may have similar neural effects [Aston-Jones and Cohen,
2005; Bromberg-Martin et al., 2010; Snyder, 2011]. In fact,
the functions of three attention networks are largely com-
plementary and overlapped on the one hand [Callejas
et al., 2004; Fan et al., 2009; Wang et al., 2014a,2015b], ena-
bling them to dynamically adapt the ever changing envi-
ronment; on the other hand, the profile of ANSs is
different across subjects, resulting in weak or no correla-
tion between ANSs [Wang et al., 2015b]. In the present
study, all three attention tasks as well as the baseline task
require the subject to focus attention on exogenous stimuli.
This endows them more similarity than difference. How-
ever, this does not mean they have the same neural mech-
anism because the measurement of their similarity and
difference depends on lots of factors such as the reliability,
validity, and the state of subject at that moment. Therefore,
we suggest that the lack of differences among attention
conditions results from that the swing of focusing atten-
tion on inward or outward environments covers the effects
of different attention conditions.

Limitations and Future Directions

There are some unanswered questions in this prelimi-
nary study. First, the comprehensive frequency characteris-
tics of the five networks cannot be determined because
only one type of cognitive task and one task frequency
were used here. The comprehensive frequency characteris-
tics of large scale networks are an important issue for
understanding the mechanism of low frequency oscilla-
tions and should be investigated in multiple cognitive
activities and frequencies by simultaneous EEG-fMRI
recording. Second, there is no detected correlation between
lfSSBRs and behavioral performance at the network level.
In contrast, behavioral performance may be more related
to the effects of regional activities or information commu-
nication [Burzynska et al., 2013; Wang et al., 2015a]. How
the brain–behavior relationship is established by lfSSBRs
warrants future study. Third, the neurovascular coupling
contributes more for signals in the infraslow frequency
range (<0.1 Hz) than those in the slow frequency range
(0.1–1 Hz) [Chen and Glover, 2015; Robinson et al., 2006].
Whether lfSSBRs in these two frequency ranges are
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distinctively impacted by the neurovascular coupling is
unknown. Setting task frequency within these ranges may
help to solve this problem. Furthermore, the validity of
ANSs should be emphasized. Different versions of ANT
may measure different components of attention due to the
complexity of attention system [Ishigami and Klein, 2010;
Petersen and Posner, 2012]. A clear definition of attention
components is needed in future research.

CONCLUSIONS

We demonstrated by power analysis, time correlation
and coherence analyses that lfSSBRs modulate large scale
networks in specific frequency bands. Almost the same
pattern is revealed by multiple analytical approaches that
the triple network system and the sensory-motor system
can be modulated in a frequency tagging means. This
opens a new window to investigate large scale brain activ-
ities and their frequency characteristics.
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